Modeling Method and Design Optimization for a Soft- Switched DC-DC Converter
نویسندگان
چکیده
High performance cloud computing enables many key future technologies such as artificial intelligence (AI), selfdriving vehicle, big data analysis, and the internet of things (IoT), using clustered CPU and GPU servers in the datacenter. To improve the power efficiency and the infrastructure flexibility, the computing industry is adopting 54VDC to power the servers in the open compute racks. In this paper, a new modeling technique for a soft-switched DC-DC converter is presented and suitable to guide optimal design in different applications, for example, 54V to point-of-load (PoL) for the new open compute rack. To improve the model accuracy and reduce the complexity, this paper proposes a reduced order linear differential equation (LDE) based modeling technique to discover 1) the tank resonance involving the output inductor; 2) output current ripple and its impact on power efficiency; 3) the proper on-time control for soft switching; 4) unique bleeding mode under the heavy load; 5) output power capability of the converter; and 6) component tolerance analysis and impact on the performance of the converter. With the power loss estimation, design guideline is provided for a reference design and design improvement based on this new modeling technique. Using the proposed method, great accuracy can be expected in the efficiency estimation. Simulation and experimental results are provided to verify the modeling technique in a 54V-1.2V 25A DC-DC converter prototype.
منابع مشابه
A Soft Switched DC-DC Boost Converter for Use in Grid Connected Inverters
This paper presents a soft-switching DC-DC boost converter, which can be utilized in renewable energy systems such as photovoltaic array, and wind turbine connections to infinite bus of a big power network, using grid connected inverters. In the proposed topology for the DC-DC boost converter, the main and the auxiliary power switches are turned on and turned off with zero voltage switching (ZV...
متن کاملA High Efficiency Low-Voltage Soft Switching DC–DC Converter for Portable Applications
This paper presents a novel control method to improve the efficiency of low-voltage DC-DC converters at light loads. Pulse Width Modulation (PWM) converters have poor efficiencies at light loads, while pulse frequency modulation (PFM) control is more efficient for the same cases. Switching losses constitute a major portion of the total power loss at light loads. To decrease the switching losses...
متن کاملAnalysis and Experimentation of Soft Switched Interleaved Boost Converter for Photovoltaic Applications
Conventional energy sources are fast depleting due to poor conservation practises and excessive usage while the world’s energy demands are growing by minute. Additionally, the cost of producing conventional energy is rising also leading to an increase in harmful environmental pollution. Hence, there is a need to look at alternative energy sources such as sun, water and wind. Photovoltaic (PV) i...
متن کاملAnalysis of Switched Inductor Three-level DC/DC Converter
A non-isolated DC/DC converter with high transfer gain is proposed in this paper. The presented converter consists of the switched inductor and three-level converters. The DC/DC power converter is three-level boost converter to convert the output voltage of the DC source into two voltage sources. The main advantages of DC/DC converter are using low voltage semiconductors and high gain voltage. ...
متن کاملSimulation of 5kw/20khz Soft Switched DC-DC Converter
This paper presents the design and simulation of a Full Bridge Soft Switched DC-DC Converter, working with an internal frequency of 20khz with an output power of 5kw. Since the ZVS range is independent of the switch capacitance, IGBT’S are used by adding the external capacitors to the switches without increasing the switching losses. However, it is not easy to design a hard-switched converter s...
متن کامل